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Abstract - In the current data-driven world, all organizations rely on data warehousing solutions to conduct their daily 

operations and decision-making. Refreshing the data in analytical data warehouses in a timely manner is one of the critical goals 

of the data operations team. Technology has advanced a lot over the last couple of decades with the evolution of innovative and 

powerful processing engines, e.g. Spark, Hadoop, advanced databases, etc. But new challenges like increasing data volume, 

integration of additional sources, complex transformations, datasets for new use cases and unforeseen issues keep the operation 

teams on their toes. Generally, teams tend to add more resources (CPU, RAM, etc.), which is an easy way out for temporary 

respite. However, nothing comes for free – more resources mean increased infra costs. Hence, there is a need to dig deeper and 

analyze the ETL [1] processes to identify the bottlenecks and suggest corrective actions/ design changes. While doing a deeper 

analysis, the run history of ETL jobs is crucial for ensuring data integrity, optimizing performance, and maintaining overall 

system health. There should be enough buffer time to meet SLAs [2] in case of abends or unforeseen issues. Most of the research 

on ETL performance is focused on the "how" to optimize data refresh times, but there is less research done to identify "what" to 

optimize. Moreover, analysis and optimization of ETL require not only the technical skillset, but also a functional understanding 

of the nature of data. This article talks about approaches to analyze an ETL run and identify what are the problematic ETL steps. 

This article also talks about processes and ways to improve pipeline performance based on appropriate data models [3] and 

actions, with a knowledge of domain data.  
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1. Introduction 
Data pipelines facilitate the extraction, transformation, 

and loading (ETL) of data from disparate sources into 

centralized repositories, such as data warehouses or data lakes. 

With the increasing volume, variety, and velocity of data, 

optimizing these pipelines has become imperative. Effective 

data models play a critical role in ensuring data pipelines are 

both performant and scalable.  
 

As organizations expand, they encounter a surge in data 

volume. Properly optimized ETL (Extract, Transform, Load) 

processes are crucial for efficiently managing larger datasets 

without experiencing significant performance drops. These 

streamlined ETL systems can easily adapt to various data 

sources, formats, and evolving business needs without 

necessitating major overhauls. Efficient ETL processes also 

help mitigate the burden on both source and target systems, 

preventing performance bottlenecks that could negatively 

impact other applications, concurrent processes, and users. 

Organizations that can swiftly process and analyze data gain  

 

 

a competitive edge by obtaining insights faster and making 

timely business decisions ahead of their competitors. 

Streamlined ETL systems enable businesses to experiment 

with new data sources and analytics techniques without being 

limited by performance concerns. 

 

For data analysts, data scientists, and business users, 

reliable ETL processes are essential for accessing the data they 

need. Slow or unreliable ETL systems can cause frustration 

and hinder these professionals' ability to perform their tasks 

effectively. Efficient ETL processes support self-service 

analytics by providing accurate and timely data, empowering 

users to explore and analyze information independently. 

 

1. 2. Literature Review 
Streamline and optimization of ETL pipelines can be 

addressed by various means. Eg. Following ETL best 

practices, implementing ETL and data-warehouse on best tech 

stacks available, increasing storage and computing power, etc. 

However, it is critical to understand gaps and problems in 

current implementation before ETL can be optimized. ETL 
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performance problems should be addressed and reviewed 

from a data model and functional standpoint as well. A 

comprehensive research and study have already been done on 

optimizing ETL and best practices for ETL development. 

     

A study by Dhamotharan Seenivasan [4] outlines the ETL 

best practices for performance optimization and ETL design. 

Another study for ETL performance improvement gives 

insights into the query cache approach. [5] 

         

An article by Lina Dinesh and Gayathri Devi [6] proposes 

algorithms for handling and optimizing large volumes of data 

on ETL processes based on cloud computing.  

optimizing ETL processes, companies can lower operational 

costs by reducing the need for extensive computational and 

storage resources, which is particularly beneficial in cloud 

environments where resource utilization directly affects 

expenses. 

      

The literature review by Mozamel M. Saeed1, Zaher Al 

Aghbari, and Mohammed Alsharidah [7] discusses spark 

optimization techniques from a spark data clustering 

perspective. 

      

An article by Xiang Wu and Yueshun He [8] addresses 

some of the ETL performance concerns on Spark with respect 

to join optimizations. The article also discusses how a table 

profile relates to spark optimization schemes. 

 

A review of existing open literature suggests that not 

enough research has been done to optimize ETL using 

application domain knowledge and data models. Although 

ample studies are addressing ETL performance concerns, they 

are lacking in an approach to analyze and find the root cause 

of ETL performance issues.  

     

3. ETL Job Summary  
During the ETL process, the total run time comprises the 

durations of extraction, data transformation, and loading to 

the target warehouse. The end users have access to refreshed 

data after all the steps are completed successfully. The total 

duration of the ETL process could be the sum of each step, or 

there might be overlaps among the steps. This article will 

consider that each step is being executed in series. 

Additionally, the scenario considered in this article has both 

the source and target relational databases, and the 

transformation is performed using Spark in a file system. 

 
The first step in analyzing any ETL run is to review the 

high-level job summary, focusing on the time taken and the 

number of records processed. The statistics for a given 

pipeline run should be compared with historical stats and 

trends. By examining these data points, one can identify which 

ETL steps require further analysis. For example, as shown in 

Table 1, the transform step is the longest-running step, with an 

average duration of 96 minutes. In the current run, the 

transformation step took 110 minutes, which is longer than the 

historical 60-day average. Therefore, to optimize this pipeline, 

one should start by diving deeper into the transformation run 

time details. While discussing all three steps, the primary 

focus will be on the transformation step. 
 

Table 1. Job summary for an ETL run 

Job 

Summary 

Current Run 

Summary 

Historical Average 

(60 Days) 

  Duration   

(Mins) 

# 

Records 

 ('000) 

Duration    

(Mins) 

# 

Records  

 ('000) 

Total 164   136   

Extract 23 3,479 21 3,189 

Transform 110 7,409 96 7,118 

Load 21 6,918 19 6,598 

                

When reviewing the job summary and setting 

benchmarks for performance or SLAs, it is also essential to 

consider the resources and workload involved during a 

specific data pipeline run. 

 
Table 2. Key KPIs description 

# Executors [9] 

A process launched for an application 

on a worker node. The higher the 

number of executors, the higher the 

number of worker nodes.  

CPUs 
Number of CPUs 

data Read 

During transformation, data from 

tables will be read from storage. Data 

read depends on transformation logic 

and table size. In some cases, 

transformations written to scan full 

tables will have high data reads 

compared to transformations written in 

an optimized manner with incremental 

delta processing. 

Data Written 
Transformed data written back to 

storage. 

#Tables 

Transformed 

Number of transformed objects, 

including stage and final objects. 

# Load Plans 

An incremental pipeline can bring data 

from different systems and 

functionalities to different areas. Sales 

data from OLTP, warranty data from 

flat files, etc. 

Throughput 
# of Records process/ Time taken 

Error Rates 
Frequency or count of error records 

(duplicates, schema mismatch, etc.) 
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249 GB 
 

 

 

 

 

Fig. 1 Key KPIs to note During ETL run analysis 

4. Extraction Step 
The first step to analyzing extraction is to get a list of 

extraction objects/ queries which are regularly running for a 

longer duration and impacting downstream jobs. Incremental 

Delta Extraction [10]: Extract the data that has changed since 

the last ETL run. This reduces the volume of data being 

processed. 

 

Sometimes, there are cases when source data sets do not 

have a way to identify updates (last updated date not 

available), or datasets can go through hard deletions. In such 

cases, one alternative could be to check if any triggers or logs 

are available in the source which captures deleted transactions. 

Also, instead of extracting such datasets in full for all the 

columns, check for the possibility of extracting only the key 

columns and determine deleted records on the transformation 

side. 

 

Source Filtering: Apply filters at the source database level 

to reduce the amount of data extracted. Extract only the 

necessary data columns and rows required for processing. 

Instead of issuing complex queries to source systems, extract 

and stage individual datasets locally. Do the joins and heavy-

duty operations post extracting the base data instead of 

overloading source systems. 

 

5. Transform Step 
During the transform step, the extracted data is converted 

into a format required for analysis. During this step, the data 

is cleaned, filtered, joined with other datasets, aggregated, etc., 

to achieve business and functional objectives. 

      

To analyze the performance bottlenecks during the 

transformation step, the first step is to determine the 

transformation which is holding the pipeline. List down the 

top n (5) steps which are running for the longest duration.  

 

In the table below (Table 3), Revenue_Fact is running for 

the maximum duration of 22 minutes, followed by 

Sales_Agg_Fact, taking 20 minutes. At first glance, it makes 

sense to analyze Revenue_Fact transformation first. However, 

Revenue_Fact is running Parallel to Sales_Fact. So, unless 

both Revenue_Fact and Sales_Fact are analyzed and tuned, 

the overall pipeline time will not improve much. On the other 

side, Sales_Agg_Fact is running in parallel to 

Sales_Backlog_Fact but Sales_Backlog_Fact finishes in 5 

minutes. This means Sales_Agg_Fact is running in standalone 

mode for the remaining 12 minutes, thus holding the pipeline. 

If Sales_Agg_Fact performance can be analyzed and 

improved, there is a better chance of bringing down the run 

time of the pipeline.   

 

Once the consistently long-running transformations are 

identified, further analysis is required to identify the long-

running cause. The time spent on the transformation step 

depends on a lot of factors, such as data volume processed 

during an incremental run, complexities involved in 

transformation logic, the underlying data model design, 

resources available for processing, etc. While there could be 

numerous reasons behind the above factors, a few scenarios 

will be explained with examples.  

 

Next, lets focus on Sales_Stage, which is taking 18 

minutes. In the given example, Sales_Order_Header and 

Sales_Order_Lines datasets are joined together to populate 

Sales_Stage. During incremental, a changed or new record 

could flow in either Sales_Order_Header or 

Sales_Order_Lines. Hence, incremental changes on both input 

objects should be considered, which means 

Sales_Order_Header (500 M records) will be joined with 

Sales_Order_Lines (2 B records) before incremental data 

filters can be applied. Cases like this could be very costly and 

resource-intensive operations. Joining large datasets requires 

careful consideration of indexing, query optimization, and 

resource management to ensure efficient performance. On the 

other hand, joining small datasets is generally straightforward, 

focusing on minimizing overhead and ensuring in-memory 

operations. 

 

Table 3. Top 5 Long-Running transformations 

Object Name 
Duration  

(Mins) 

# Records  

 ('000) 

Start  

Time 

End 

Time 

Revenue_Fact 22 57 14:00 14:22 

Sales_Agg_Fact 20 20 14:22 14:42 

Sales_Stage 18 37 13:42 14:00 

Sales_Fact 17 10 14:00 14:17 

Sales_Backlog_Fact 5 5 14:22 14:27 

# Executors 

10 

# Tables Transformed 

131 
Data Read 

190 GB 

# Load Plans 

15 

# CPUs 

8 

Data Written 

249 GB 
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                                                                         Fig. 2 Lineage for a transformed object 

 

                

 

 

 

 

 

 

 

 

Fig. 3 Modified Lineage to Load Stage (Sales_Stage) table

One possible way to eliminate such joins between high-

volume tables could be to stage the necessary data before the 

join. Identify changed Sales_Order_Ids from 

Sales_Order_Header and Sales_Order_Lines into a stage table 

Sales_Changed_Orders. Join the list of changed orders  

Sales_Changed_Orders with both Sales_Order_Header and 

Sales_Order_Lines to create another set of stage tables 

Sales_Order_Header_Stage and Sales_Order_Lines_Stage. 

These stage tables will only have the data for today's changed 

data. The volume stage tables Sales_Order_Header_Stage and 

Sales_Order_Lines_Stage would be much less compared to 

Sales_Order_Header_Stage and Sales_Order_Lines_Stage. 

Hence, the Sales_Stage transform, which earlier was taking 18 

minutes, could finish much faster. In this example, with the 

modified lineage (Figure 3), the run time for Sales_Stage was 

reduced from 18 minutes to 2 minutes. Although there were 

additional intermediate steps introduced, but join of two large 

tables was avoided, thus providing a net benefit on the run 

times.[8] The impact could be greater if such datasets (eg 

Sales_Stage) are used as an input dataset for multiple 

transformations.  

 

For significant data volume transformation, the primary 

check is to ensure that appropriate filters are applied either on 

the extract step itself or in the transformation logic. The filters 

should be pushed to the initial stages of transformations. 

Additionally, the use of operators like distinct, sort-by, and 

non-equi joins should be carefully reviewed.

  
 

Revenue_Trx 

Revenue_Trx_Lines 

Sales_Order_Header 

Sales_Order_Lines 

Revenue_Stage 

Sales_Stage 

Revenue_Fact 

Sales_Fact 

Sales_Backlog_Fact 

Sales_Agg_Fact 

Union 

Join 

Join 

Join 

Sales_Order_Header 

Sales_Order_Lines 

Sales_Changed_Data 

(Changed Order IDs 

from Header and Lines 

Sales_Order_Heade

r (Changed) 

Sales_Order_Lines 

(Changed) 

Sales Stage) 
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Table 4. Sales_Stage run time comparison with modified approach 

Object Name State 
Duration  

(Mins) 

# New Records  

 (000) 

Total #Records  

 (000) 

Sales_Order_Header Earlier 2 2 500,000 

Sales_Order_Lines Earlier 4 18 2,000,000 

Sales_Stage Earlier 18 37 37 

Sales_Order_Header 

(Changed) 
Modified 2 2.5 2.5 

Sales_Order_Lines 

(Changed) 
Modified 3 24 24 

Sales_Stage Modified 2 37 37 
 

There could be scenarios where a transactional dataset 

(e.g. Sales) is joined to a dimensional dataset (e.g. Customer). 

During the design phase, it should be carefully evaluated if 

changes to the dimensional dataset should be listened to or not. 

Based on the nature of data and cardinality, an update on a few 

customer records can cause huge updates for the final dataset.  

 

All the above considerations can be applied only when 

analysis is done with a functional background with a clear 

understanding of data transformation logic. 

 

6. Load Step 

The load phase is the final step of the ETL process, where 

transformed data is exported and loaded into a data warehouse. 

The time spent on this step depends on various factors, such 

as the volume of data, table schema, table size, data warehouse 

capacity (in terms of CPU and other resources), throttling, and 

concurrent processes or queries using data warehouse 

resources during the pipeline load. 

 

      During the load step, records can be inserted, updated 

(deleted and reinserted), or deleted. The larger the number of 

records processed during an incremental run, the longer the 

load times will be. Additionally, the larger the size of the 

warehouse table, the more costly delete and update operations 

are. 
 

Some basic data modeling techniques can help improve 

load times, including table partitioning [11] and managing 

table indexes. For example, consider a scenario where the 

Sales_agg_fact table aggregates sales data by month. Records 

for the current month's aggregate will receive daily updates, 

while older months' data remain stable. Updating (or deleting 

and inserting) the current month's records in a 100-million-

row table can be a costly operation. However, partitioning the 

table by month and then updating only the current month's 

partition simplifies the operation significantly. 

Index management [12] also plays a crucial role during 

the load process. Indexes are generally defined on all 

warehouse tables to optimize reporting performance. 

However, indexes can slow down the load (write) process. 

Therefore, it may be beneficial to disable indexes during the 

load operation and re-enable them once the load is complete. 

 

3. 7. Conclusion 

In conclusion, ETL processes are critical for ensuring 

reliable and scalable data management in today's data-driven 

business world. Various business operations continually 

modify and enter data into source systems, causing ETL run 

times to vary proportionally with these changes. Events such 

as month-end closings or bulk updates in source systems can 

significantly extend pipeline run times.  

 

To maintain optimal ETL performance, continuous 

analysis of pipeline run statistics, trend analysis, proactive 

monitoring, and ongoing improvements are essential. 

Leveraging advancements in technology, particularly the 

integration of Machine Learning (ML) and Artificial 

Intelligence (AI) capabilities, can further enhance monitoring 

and proactive measures.  

 

ML algorithms can predict the need for additional 

capacity to handle high data volumes based on incremental 

updates in the source systems and can automatically provision 

this capacity for a given run. Additionally, automation can 

provide real-time insights and predict ETL completion times, 

making the entire process more efficient and responsive to 

changing demands. 

 

However, the underlying data model for the pipeline 

remains a vital driver of pipeline performance. A top-down 

approach of analyzing pipelines, and key KPIs [13], taking a 

balanced approach in terms of tech stack enhancement and 

data model optimization is a must to ensure a healthy pipeline 

and ever-changing data warehousing solutions.
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